
Deep learning applied to data-driven
discovery of partial differential
equations in fluid mechanics.

Jean Jonathan Schuster

Post-graduation in Robotics and Artificial Intelligence

Universidad Tecnológica

Rivera – Uruguay

December of 2021

Deep learning applied to data-driven
discovery of partial differential
equations in fluid mechanics.

Jean Jonathan Schuster

Project of Post-graduation submitted to the course

of Robotics and Artificial Intelligence, from the

Technologic University of Uruguay, as part of

the requirements necessary to obtain the title of

Epecialist in Robotics and Artificial Intelligence.

Tutor:

Ph.D. Prof. Emanuel da Silva Diaz Estrada

Rivera – Uruguay

December of 2021

Schuster, Jean Jonathan

Deep learning applied to data-driven discovery of partial

differential equations in fluid mechanics. / Jean Jonathan

Schuster. - Rivera: Universidad Tecnológica,

XI, 37 p.: il.; 29, 7cm.

Tutor:

Emanuel da Silva Diaz Estrada

Project de Post-graduation – Universidad Tecnológica,

Post-graduation in Robotics and Artificial Intelligence,

2021.

Bibliographic references: p. 34 – 37.

1. Red neuronal informada por la f́ısica,

2. Descubrimiento de ecuaciones diferenciales parciales

basado en datos, 3. Problemas inversos.

I. da Silva Diaz Estrada, Emanuel, . II. Universidad

Tecnológica, Post-graduation in Robotics and Artificial

Intelligence. III. T́ıtulo.

MEMBERS OF THE DEFENSE COURT OF THE PROJECT

Ph.D. Prof. Emanuel da Silva Diaz Estrada

Ph.D. Prof. Paulo Drews-Jr

Ph.D. Prof. Elizaldo Domingues dos Santos

Rivera – Uruguay

December of 2021

iv

ABSTRACT

The concept of Physics-Informed Neural Networks (PINNs) is applied for

solving 2D incompressible flow over a bluff body with a square shape, forming

a von Kármán street vortex. We create the dataset through Computational

Fluid Dynamics simulation for training the PINNs, and aim to discover latent

solutions through supervised learning tasks while respecting any given laws of

physics described by Navier-Stokes and continuity equations. We were able to

create our dataset, and correctly apply the methodology to discover parame-

ters of the Navier-Stokes equations and the pressure field without feeding the

algorithm with pressure data. Noisy was introduced in the data to study the

performance of the PINNs in this situation, and even with sparse and scarce

data the algorithm was able to identify the unknown parameter with great

precision.

Keywords:

Physical-Informed Neural Network, Data-driven discovery of partial

differential equations, Inverse problems.

v

RESUMEN

Se aplica el concepto de Redes Neuronales Informadas por la F́ısica (PINN)

para resolver un flujo incompresible 2D sobre un cuerpo bruto no aerodinámico,

formando una calle de vórtices von Kármán. Creamos el conjunto de datos

a través de la simulación de dinámica de fluidos computacional para entrenar

el PINN, y nuestro objetivo es descubrir soluciones latentes a través de tar-

eas de aprendizaje supervisadas, respetando las leyes de la f́ısica descritas por

las ecuaciones de Navier-Stokes y de la continuidad. Pudimos crear nuestro

conjunto de datos y aplicar correctamente la metodoloǵıa para descubrir los

parámetros de las ecuaciones de Navier-Stokes, y el campo de presión sin ali-

mentar el algoritmo con datos de presión. Se introdujo ruido en los datos para

estudiar el desempeño de los PINN en esta situación, e incluso con datos esca-

sos y esparcidos el algoritmo fue capaz de identificar el parámetro desconocido

con gran precisión.

Palabras claves:

Red neuronal informada por la f́ısica, Descubrimiento de ecuaciones

diferenciales parciales basado en datos, Problemas inversos.

vi

List of Figures

2.1 Elemental cartesian fixed control volume showing the surface

forces in the x direction only. 8

2.2 Location of Machine Learning within Artificial Intelligence. . . . 12

2.3 A taxonomy of neural network architectures. 12

2.4 Artificial neuron schematics. 13

2.5 Sigmoid vs Hyperbolic Tangent activation function. 14

2.6 General diagram of a perceptron NN for supervised learning. . . 15

2.7 Error surface of a two degrees of freedom perceptron. 16

2.8 Machine learning algorithms categorization. 18

2.9 Machine Learning vs Deep Learning. 19

3.1 Top:Incompressible flow and dynamic vortex shedding at Re

=100. The spatio-temporal training data correspond to

the depicted rectangular region in the cylinder wake. Bot-

tom:Locations of training data-points for the stream-wise and

transverse velocity components, u(t, x, y) and v(t, x, t), respec-

tively. 21

3.2 Discretized domain for CFD simulation. Vertically, on the left,

the square obstacle to the flow is showed. Around it, the mesh

is finer, and the same occurs in the region of the domain down-

stream of the square. 22

3.3 Schematic structure of the PINN. 23

4.1 Vorticity field demonstrating the von Kármán vortex street for

the last time step of simulation. The spatio-temporal dataset

was obtained from data in the depicted rectangular region in

the square wake . 26

vii

4.2 Spatio-temporal training data obtained by CFD simulation cor-

responding to the depicted rectangular region in the square

wake. Contours: in the left predicted x velocity field (u), in

the right predicted y velocity field (v) by PINN. 27

4.3 TOP: at left predicted pressure field, as right exact pressure

field. BOTTOM: Table 1st row exact values for λ, 2nd row λ

values for clean training data and 3th row values of λ for 1%

noise inserted in the data. 27

4.4 Red regions represent the places where the error between Pre-

dicted and Simulated Pressure is greater (c). Figure (b) cor-

responds of the Simulated pressure subtracted from the Atmo-

spheric Pressure. 29

4.5 λ1,2 convergence after 200000 iteration for clean dataset. 30

4.6 Training error (loss) by iteration first loss minimization, blues

curve for clean training data, red for 1% noisy training data. . . 30

4.7 λ1,2 convergence after around 37000 iteration in the final loss

minimization for clean data. 31

4.8 Mean square error (loss) by iteration, blues curve for clean train-

ing data, red for 1% noisy training data. 31

viii

List of Tables

3.1 Simulation parameters as Reynolds Number (Re), free stream

velocity (U∞), characteristic length (D for cylinder diameter an

L for the square side), kinematic viscosity (ν), discrete domain

dimensions in the xy plane and boundary condition (BC) 20

ix

Acronyms

AAAI Association for the Advancement of Artificial Intelligence 3

AI Artificial Intelligence 2, 11, 17

CFD Computational Fluid Dynamics 20, 21, 23, 26, 32

CNN Convolutional Neural Network 3

DL Deep Learning 5, 11, 17, 18, 19, 20, 22, 23, 24

DNN Deep Neural Network 11

DNS Direct Numerical Simulation 1

FEM Finite Elements Method 32

HFM Hidden Fluid Mechanics 4

L-BFGS-B Limited-memory Broyden–Fletcher–Goldfarb–Shanno B 25

LES Large Eddy Simulation 2

ML Machine Learning 11, 17, 18, 19

NN Neural Network 11, 12, 13, 14, 15, 16, 19, 22, 23

NS Navier-Stokes 1, 10, 21, 22, 23, 24, 28, 29

PDE Partial Differential Equation 4, 20, 24, 32

PINN Physical-Informed Neural Network 22, 26, 27, 28, 30, 32

RANS Reynolds-Averaged Navier-Stokes 1

x

Contents

List of Figures vii

List of Tables ix

List of symbols ix

List of acronyms x

1 Introduction 1

1.1 Objectives . 5

1.1.1 Specific objectives . 5

2 Theoretical foundations 6

2.1 Field equations for Newtonian fluid flow 6

2.1.1 Continuity equation . 7

2.1.2 Momentum equations . 7

2.1.3 Navier-Stokes equations 10

2.2 Artificial intelligence . 11

2.2.1 Perceptron neural network 12

2.2.2 Deep learning . 17

3 Methodology 20

4 Results 26

5 Conclusions 32

Bibliography 34

Glossary 37

xi

1 Introduction

In a time of profound transformations in society at speeds never seen before,

arising from a connected and technological world, where society is influenced

by codes of artificial intelligence and machine learning, humanity requires ever

faster responses. For example, in large conurbations, we may have entire cities,

or large regions of agriculture, affected by a local microclimate, called an urban

heat island, which can be generated due to both its geographical characteristics

and human activity, affecting directly the daily lives of the population in these

areas, and is a growing problem due to the increase in urbanization on the

Planet.

The dynamics of these microclimates, and weather in general, can be mod-

eled by a set of equations defined by conservation laws, like conservation of

mass, energy and momentum. From those laws arise the well known Navier-

Stokes (NS) equations that describe the fluid motion (Pope, 2000).

NS equations smooth solution were obtained only for the case of simple

two-dimensional flows, whereas three-dimensional turbulent flows, that have

complex vorticity and chaotic behavior, have proven intractable to any analytic

solution but numerical approximation analysis methods , like Direct Numerical

Simulation (DNS) where al spatial and temporal turbulence scales are resolved

(Phillips, 2018).

Due to extreme computational cost of Direct Numerical Simulation (DNS),

other methods arise, like the idea proposed by Osborne Reynolds (1985),

whereby an instantaneous quantity is decomposed into its time-averaged and

fluctuating quantities, today well known as Reynolds-Averaged Navier-Stokes

(RANS) equations. Other approaches try to remove the small scales from the

numerical solution by a low-pass filter of the NS equations, once its informa-

tion is not relevant and represent the major part of the computational cost.

However, those small scales cannot be ignored because they play an important

role, mainly in energy dissipation, and therefore must be modeled. This small

1

scales model was first proposed by Smagorinsky, 1963, on atmospheric air cur-

rents simulation, and is known as Large Eddy Simulation (LES). After that

many other LES models arise, like those proposed by Germano et al., 1991,

and Meneveau and Katz, 2000.

Those numerical experiments, so called numerical flow simulations, are

used in weather forecast, aerodynamic problems: from automobiles, airplanes,

buildings, wind turbine blades; flow control and optimization and other engi-

neering studies applied to fluid mechanics.

However, due to the complexity of the equations that describe the flow of a

fluid, these are problems where the applied modeling techniques imply a very

high processing time, or overly in simplified models that may not represent

many aspects of the physical reality of the problem.

Thus, it is very important that the numerical models for fluid flows are

able to combine the physical properties and also techniques that reduce the

machine time of the simulations. For example, in a numerical forecast of the

weather it is necessary to obtain its results in advance, because it is useless for

a model to correctly forecast the weather conditions after they have occurred.

In fact, Brunton et al., 2020, state that the extremely wide range of spatio-

temporal scales nature of turbulence, makes it to computational expensive to

resolve all scales in a numeric experiment, even with Moore’s law, there are

several decades away from resolving all turbulence scales for simulations that

interest to humanity activities.

In front of this scenario, efforts to develop methods to minimize computa-

tional cost in fluid mechanics have been made since the 60’. Much of those

methods were around since the 50’ in many names like Cybernetics, automata

theory, and complex information processing, all of them related to machine

thinking (McCorduck & Cfe, 2004).

So, in 1956, all those disciplines related to machine thinking gave rise to

a new science in a workshop at Dartmouth College, the Artificial Intelligence

(AI), conceived by John McCarthy and completely separate from the Cyber-

netics field (Crevier, 1993; McCorduck & Cfe, 2004; Russell & Norvig, 2021).

Among the many proposed methods of model and treat turbulence, one

with especial interest to this work, trace back from the early 60’s, when Rechen-

berg, 1964, used a branch of machine learning, closely related to Cybernetics

(Wiener, 2019), where evolutionary algorithms were used to find a configu-

ration of angles of a corrugated structure composed of 5 linked plates, that

2

would have the minimum drag possible in a wind tunnel experiment. The five

angles of the plates were generated randomly by a Galton board, producing a

Gaussian distribution that introduced stochasticity into the optimization, and

the increase or decrease of the angles was learned based on the success rate of

the experiments. The experiment shows that the optimal drag configuration

of the plates was a smooth convex upwards shape. Rechenberg experiment re-

motes, maybe, the first application of artificial intelligence to a fluid mechanics

problem.

Despite all the euphoria about AI in the 50’, 60’ and early 70’, in 1973,

James Lighthill made a report evaluating the current state of AI written for

the British Science Research Council.

The report, know later as the Lighthill report, concluded that the potential

promises of AI was exaggerated, and there was no discovery so far that result

in the promises made by researches, it even pointed out that the most disap-

pointing research area had been machine translation, where great amounts of

resources ware been spent with practically no fruitful results obtained, mainly

by the lack of computational power (Schuchmann, 2019).

The chronological development of AI, according to some authors, are clas-

sified as the first AI boom, between 50’an 60’, starting with Alan Turing, when

he arbitrarily set the standard for what could be regarded as a “thinking ma-

chine”, later one know as the Turing test. In the 70’, the decade is mark as

the first AI winter, mainly after the Lighthill report was released. The 80’

are classified by many authors as the second AI boom, but at this time a lot

more effort was focused on creating commercial products, and the emerge of

large conferences like Association for the Advancement of Artificial Intelligence

(AAAI), that experienced a rapid growth, refreshing general industry and gov-

ernment interest in AI technology. The next decade, 90’, is knows as the the

second AI winter, where the expectation about AI decreased until the turn of

the century, where computational power and the data availability provided by

the internet, started to renew the interest in this area, until in 2012, when a

new architecture of NN arise, the Convolutional Neural Network (CNN), called

AlexNet, designed by Alex Krizhevsky in collaboration with Ilya Sutskever and

Geoffrey Hinton in a Ph.D. study, given place to a AI revolution that is still

on going (Lim, 2019; Ray, 2021; Schuchmann, 2019).

In the last decades, many researches in NN’s used to model dynamic sys-

tems have been published, some of them applied to transport phenomena

3

problems that is of special interest in this work, many of them with Physics-

informed Machine Learning in the last years, given place to accelerated growth

in this field (Almajid & Abu-Al-Saud, 2022; Mao et al., 2020; Ramabathiran

& Ramachandran, 2021; Sun et al., 2020; Yu et al., 2017). In 90’ Dissanayake

and Phan-Thien, 1994 and Lagaris et al., 1998 used NN’s to learn solutions

of differential equations, and most recently Raissi and Karniadakis, 2018 and

Raissi et al., 2018 proposed a framework for models that can mix physical and

conservation principles, or phenomenological behaviors represented by partial

differential equations with the data sets available in science, engineering and

technology. Where they addressed the problem of inferring solutions of time

dependent and nonlinear partial differential equations, even in noisy observa-

tions, to deal with the problem of learning, system identification, or data-driven

discovery of partial differential equations in discrete and continuous in time

networks.

As a demonstration of the early work cited above, Raissi et al., 2020 de-

veloped an approach applied on fluid mechanics problems, which they called

Hidden Fluid Mechanics (HFM), that aims to use simultaneously information

available in images from the flow visualization and the NS equations combined,

given place to a physics-informed deep learning approach.

Most of the efforts mentioned above came due the fact that solutions of

Partial Differential Equation (PDE) can be challenging, or have no analytic

solution at all, like NS equations in a turbulent flow, as mentioned early,

requiring an enormous computational effort to solve it numerically, making it

impossible to use in real time applications, like a feedback control system, or

in hour accurate weather forecast, to cite a couple of examples (Brunton et al.,

2020).

So, the importance of new strategies using some machine learning approach

rests in the fact that many applications require real time results, in special in

control applications, where using a mathematical model is not possible, for

example, a drone nowadays can not control the air flow around it to hovering

in the air only by moving its aerodynamic control surfaces, for this to be

possible it is necessary to use actuators such as propellers, and it demands lots

of energy, while some birds may stand still in the air controlling the air flow

around its wings, stretching, shrinking and rotating them.

As far as is known, birds do not know the NS equations, but somehow they

have learned to control the airflow around them to their advantage. As we are

4

far away from obtain real-time result from NS equations solutions in flows of

interest, as mentioned early, learn some features without solving the entire flow

field in a short window of time could improve manned and unmanned aquatic

and aerial vehicles autonomy and efficiency, by using those learned quantities

in control applications, to name and example, since a feedback loop could be

closed in real time.

Thus, this work intends to answer the following question: is it possible to

obtain similar results as Raissi et al., 2019 by creating a dataset through CFD

simulation in a slightly more complex bluff body, like a column with square

profile, learning the flow field, pressure field and estimate parameter of the

PDE’s that describe the flow?

1.1 Objectives

Therefore, this work has as general objective to create a dataset composed

from a velocity flow field of a two dimensional (2D) classical problem of a flow

over a solid corpus through a numerical simulation, generating a von Kármán

vortex street, and then apply a Deep Learning (DL) framework to discover

PDEs coefficients through data-driven inference.

1.1.1 Specific objectives

• Infer the hidden states of the system, in this case the pressure field (no

training pressure data will be feed), from partial knowledge of the velocity

field flow by leveraging the known underlying dynamics of the system.

• Train the DL algorithm to learn the entire velocity flow field from sparse

and scarce velocity training data.

5

2 Theoretical foundations

The next sections will shed light on fundamental concepts of fluid mechanics

an artificial intelligence that will be covered in this work.

2.1 Field equations for Newtonian fluid flow

The three-dimensional movement of a flow field is given by the velocity vector

v⃗ = u⃗i + vj⃗ + wk⃗, being the tree component of the velocity field u, v and w

parallel to the axes i⃗, j⃗ and k⃗, in a Cartesian plane respectively. Also, the

pressure p and temperature T field can be necessary to determine flow field in

certain condition, like in a presence of a pressure driven flow, like Poiseuille

Flow (Chicone, 2017), or in a presence of a temperature gradient, like happen

in a natural convection flow (Balaji et al., 2021).

In order to determine these five variables, five equations are required, which

are the continuity equation (mass conservation), the three momentum conser-

vation equations and the energy equation (energy conservation). These equa-

tions are obtained by Newton’s laws of motion and by the first and second laws

of thermodynamics, joined through the Reynolds transport theorem for a fixed

and immutable control volume. These five conservation equations contain el-

ements that are physical properties dependent on temperature and pressure,

such as density ρ(T, p), specific heat at constant pressure Cp(T, p), viscosity

µ(T, p) and the thermal conductivity K(T, p) (White, 2021).

In this section, the basic equations for Newtonian fluid flow fields are pre-

sented. Here the fluid is considered as continuous, isotropic, and in accordance

whit the Fourier law of heat conduction.

6

2.1.1 Continuity equation

The continuity equation or mass conservation equation, expresses the fact that

the sum of all mass per volume unit entering or leaving a control volume per

unit of time, must be equal to the change of mass due to the change in density

per unit of time. This law can be expresses in a general manner as Equation

2.1 (Young et al., 2010).

Dρ

Dt
+ ρ∇⃗ · v⃗ =

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 (2.1)

Where the first term in the above equation, Dρ
Dt

, is the total derivative/-

material of the density in time, where it can be split in tow terms: ∂ρ
∂t
, that

represents the rate of density change with respect to time ins transient incom-

pressible flows; v⃗ · ∇⃗ρ, that represents the change in position in time. This

parcel can be seen in the Equation 2.2.

Dρ

Dt
=
∂ρ

∂t
+ v⃗ · ∇⃗(ρ) (2.2)

In flows where the assumption of incompressible fluid can be made, ie the

particle density does not change as it travels, the total derivative can be set

to zero (Dρ
Dt

= 0). The continuity equation for incompressible flows whit this

assumption, and divided by ρ can be write as the Equation 2.3 (Schlichting &

Gersten, 2003).

∇⃗ · v⃗ =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (2.3)

2.1.2 Momentum equations

These equations come from Newton’s second law, which states that the product

of mass and acceleration is directly proportional to the resultant of all forces

acting on the body. These forces are body forces (due to the acceleration of

mass by gravity, or electromagnetic forces in case of ferrofluid) and surface

forces (forces of pressure or friction). Body forces are external forces, while

surface forces depend on the fluid’s state of motion (deformation state).

If the body force per unit volume is the product of density and the acceler-

ation of gravity (f⃗ = ρg⃗) and P⃗ the force of surface per volume unit, we have

the Equation 2.4 representing the momentum equation (Kundu et al., 2015).

7

ρ
Dv⃗

Dt
=
∂v⃗

∂t
+
dv⃗

dt
= f⃗ + P⃗ (2.4)

Where the material derivative of acceleration Dv⃗
Dt

is composed of the local

acceleration ∂v⃗
∂t

plus the convective acceleration dv⃗
dt
, the latter as a consequence

of the change in position and is represented by the Equation 2.5 (Schlichting

& Gersten, 2003).

dv⃗

dt
= ∇⃗

(
1

2
v⃗2
)
− v⃗ × ∇⃗ × v⃗ (2.5)

The surface forces vector P⃗ in the Equation 2.4, can be seen in the Equation

2.6, and are obtained by a balance of the surface forces of the state of stresses

in Figure 2.1, here shown only in x direction for simplicity.

P⃗ =
∂p⃗x
∂x

+
∂p⃗y
∂y

+
∂p⃗z
∂z

(2.6)

Figure 2.1: Elemental cartesian fixed control volume showing the surface forces in
the x direction only (White, 2021).

Thus, we can define the surface force for the Cartesian plane according to

Equations 2.7, where the shear stresses τij k⃗ acts tangential to the plane ij in

the k⃗ axis direction.

8

p⃗x = σx⃗i+ τxy j⃗ + τxzk⃗

p⃗y = τyx⃗i+ σy j⃗ + τyzk⃗

p⃗z = τzx⃗i+ τzyk⃗ + σzk⃗

(2.7)

Those surface forces can be represented as a symmetric tensor know as

stress tensor, and can be seen en the Equation 2.8. Since the tensor is sym-

metrical, the shear stresses are equal in magnitude, but act in the opposite

direction, for example τxy − τyx = 0 → τxy = τyx.

σ =

σx τxy τxz

τyx σy τyz

τzx τzy σz

 (2.8)

Replacing Equations 2.7 in the Equation 2.6,and separating the pressure

from the normal stresses, we have that: τxx = σx + p, τyy = σy + p, τzz =

σz + p. Decomposing the stresses into the normal part, which is equal in all

directions, and the shear part and replacing it in Equation 2.6, we have the

three momentum equations for one cartesian coordinate system, Equations 2.9

White, 2021.

ρ
Du

Dt
= fx −

∂p

∂x
+

(
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

)
ρ
Dv

Dt
= fy −

∂p

∂y
+

(
∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

)
ρ
Dw

Dt
= fz −

∂p

∂z
+

(
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

) (2.9)

The latter one can be represented in vector form as can be seen in the

Equation 2.10

ρ
Dv⃗

Dt
= f⃗ − ∇⃗(p) + ∇⃗ · (τ), (2.10)

where τ is called the viscous stress tensor, and is composed of the last terms

in parentheses on the right side of the equality in Equations 2.9 (Kundu et al.,

2015).

9

2.1.3 Navier-Stokes equations

The Navier-Stokes (NS) equations together with the continuity equation,

Equation 2.3, are capable to describe a flow field without heat transfer, and are

enough for this work. When heat transfer is involved an extra energy equation

is need to be derived.

By inserting a set of transport equations that relate the shear stress τij with

a proportionality constant multiplied by the velocity vector divergent, which

is useful in compressible flows (in imcompressible flow this term is equal to

zero), and a linear expansion term, or change in shape of the volume element,

which is related to viscosity µ, into the momentum Equations 2.9, and taking

into account Stokes’ hypothesis, the following equations of motion in Cartesian

coordinates according to Equations 2.11. The reader can see the sections 3.4 to

3.8 of the book Boundary-Layer Theory by Schlichting and Gersten, 2003, to

get the complete derivation of those equations and hypothesis, and how they

are put together through the Reynolds transport theorem.

ρ
Du

Dt
= fx −

∂p

∂x
+
∂

∂x

[
µ

(
2
∂u

∂x
− 2

3
∇⃗ · v⃗

)]
+

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂w

∂x
+
∂u

∂z

)]
ρ
Dv

Dt
= fy −

∂p

∂y
+
∂

∂y

[
µ

(
2
∂v

∂y
− 2

3
∇⃗ · v⃗

)]
+

∂

∂z

[
µ

(
∂v

∂z
+
∂w

∂y

)]
+

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
ρ
Dw

Dt
= fz −

∂p

∂z
+
∂

∂z

[
µ

(
2
∂w

∂z
− 2

3
∇⃗ · v⃗

)]
+

∂

∂x

[
µ

(
∂w

∂x
+
∂u

∂z

)]
+

∂

∂y

[
µ

(
∂v

∂z
+
∂w

∂y

)]

(2.11)

These are the NS differential equations that describe the flow of a New-

tonian fluids, allowing to determine the velocity and pressure fields in these

flows. Using vector notation, these equations can be given in a form that will

work for any coordinate system, as shown by Equation 2.12:

ρ
Dv⃗

Dt
= f⃗ − ∇⃗(p) + ∇⃗ · (τ), where τ = µ

(
2ε̇− 2

3
δ∇⃗ · v⃗

)
, (2.12)

10

and δ is the Kronecker unit tensor, also know as the Delta of Kronecker (δij = 1

for i = j and δij = 0 for i ̸= j) (Schlichting & Gersten, 2003).

2.2 Artificial intelligence

Artificial Intelligence (AI) science is experiencing a fast growth rate in the

contemporary world, being present in the human being’s daily life through the

internet and electronic devices, like cell phone applications accessed daily by

hundreds of millions of people.

But what after all is AI? Despite some disagreement among researchers, a

well-accepted definition can be found in the article called ”What is artificial

intelligence?”, by McCarthy, 2007, that provide the following definition:
It is the science and engineering of making intelligent machines, especially

intelligent computer programs. It is related to the similar task of using

computers to understand human intelligence, but AI does not have to con-

fine itself to methods that are biologically observable.
In the 80’ Nilsson, 1982, cited some applications of AI, between them natu-

ral language processing, intelligent retrieval from databases, expert consulting

systems, theorem proving, robotics, automatic programming, combinatorial

and scheduling problems and finally perception problems, a list that after 40

years is still incredibly current.

A more contemporaneous list of AI applications could be speech recogni-

tion, customer service, computer vision, recommendation engines and auto-

mated stock trading (IBM, 2020).

Some sub-fields of AI of special interest in this work are Machine Learning

(ML) and Deep Learning (DL), where DL is a sub field of ML, Figure 2.2,

and the word deep comes from the fact that this technique uses deep neural

networks, that are Neural Network (NN) comprised of more than three layers,

as we will see ahead in the next sections.

Until now some definitions and applications of AI are gave, so its time do

investigate how it can be done. For that task, a branch of AI will be used,

and the focus in this section will be on artificial neural networks, from now

on cited as NN, specifically on the multi-layer perceptron NN, also know as

Deep Neural Network (DNN) (Rosenblatt, 1957), that is a configuration of NN

among many others, as can be seen in the taxonomy of NN architectures in

the Figure 2.3.

11

Figure 2.2: Location of Machine Learning within Artificial Intelligence, adapted
from IBM, 2020.

Figure 2.3: A taxonomy of neural network architectures (Mohd Yusof, 2005).

2.2.1 Perceptron neural network

Perceptron NN is a concept introduced by Rosenblatt, 1957, that made use of

neuron idea proposed by McCulloch and Pitts, 1943, that described such a ar-

tificial nerve cell, or artificial neuron, as a simple logic gate with binary outputs

through a Heaviside (step) activation function (Russell & Norvig, 2021). Such

artificial neuron consist in a mathematical function, where each neuron have

inputs, weighs each of those inputs at a time, sums them up and passes the

sum result through a function, called activation function, to produce output.

In the Figure 2.4 schematic representation of such a neuron can be seen.

The idea behind an artificial neuron is, given a numerical value of the inputs

(Xi) and the weights (Wi), a output will be produced through a function inside

the neuron, like a weighted sum, as can be seen in the Equation 2.13, that sum

the weight and inputs for a simple case with only three inputs. The values of

weights, by general, are initialized randomly.

Y = X1W1 +X2W2 +X3W3 (2.13)

12

Figure 2.4: Artificial neuron schematics adapted from Bhardwaj, 2020.

As a linear regression, each neuron also has a bias which can be interpreted

as an input that always has the value 1 and it too must be weighted, e.g., a

neuron that have two inputs requires three weights, one for each input and

one for the bias, were the Equation 2.13 summing the weights can be write in

sum notation as Equation 2.14 (Brownlee, 2020). The function of the bias is

to shift the result of activation function towards the positive or negative side

(Malik, 2019).

Y =
n∑

i=1

XiWi +Wbias (2.14)

The weighted inputs are then summed and send through an activation

function, like a simple step activation functions used in the original idea of a

neuron (McCulloch and Pitts, 1943), where if the summed input was above a

threshold valued it would output 1, else outputs 0.

Activation functions are available in many flavors and traditionally non-

linear activation functions are most used today. Those functions allows the

NN to combine the inputs in a complex way, providing a richer capability in

the problems they can model.

The most common non-linear functions is the logistic also called the sigmoid

function, Equation 2.15, that is used to output a value between 0 and 1 with

an s-shaped distribution, in a similar manner the hyperbolic tangent function,

also called tanh, that outputs the same distribution as the sigmoid function

but over the range -1 to +1, an that represents and advantage over sigmoid,

since the negative inputs will be mapped strongly negative and the zero inputs

will be mapped near zero in the tanh graph (Sharma, 2017; Sutton & Barto,

2018).

σ(j) =
1

1 + e
∑

i wijxi
(2.15)

13

In the Figure 2.5 can be seen a hyperbolic tangent activation function

over a sigmoid activation function graphic. Both functions are differentiable,

monotonic while its derivative are not monotonic. The tanh function is mainly

used classification between two classes, an the two of them are used in feed-

forward nets, as can be seen in the following texts, that explains why they are

so popular (Sharma, 2017).

Figure 2.5: Sigmoid vs Hyperbolic Tangent activation function (Sharma, 2017).

Neurons can be associated in many forms and have many layers, those

association are know as NN. Maybe the most used association of neuron is a

Perceptron NN, that is a feed-forward network in is original approach, that

can be classified accordingly to the number of layers, as can be seen in Figure

2.3. A single layer perceptron is formed by a input layer, a hidden layer of

neurons, and a output layer, while a multi layer have at least two hidden layer

of neurons (Mohd Yusof, 2005).

In the Figure 2.6 a general diagram of a perceptron NN is showed. This

perceptron NN is a feed-forward NN, that means that the update of the weights

and bias occur from the first hidden layer to the last one by error propagation,

unlike a backpropagation NN, where the update occurs backwards, i.e., from

the last layer to the first.

As weight and bias are now defined, a method to adjust they values is be

needed. The action of adjusting weights and bias is called training of a NN,

14

Figure 2.6: General diagram of a perceptron NN for supervised learning (Sim-
plilearn, 2021).

and in a multilayer perceptron is the procedure by which the values for the

individual weights and bias are calculated, in a way that the relationship the

NN is modelling is accurately resolved.

Maybe the most common technique to training a NN are the methods

based on the minimization of a sum-of-square errors function, and is given by

a sum over all patterns in the dataset used in the training process, and over

all outputs, as can be seen in Equation 2.16 (Bishop et al., 1995):

E(w) =
1

2

N∑
n=1

c∑
k=1

{yk(Xn;w)− tnk}
2 , (2.16)

in this equation yk(X
n;w) represents the output of unit k as a function of

the inputs vector Xn and the weights vector w, N is the number of training

patterns, c is the number of outputs, and tnk represents the target value for the

output unit k when the input vector is Xn.

The error function mentioned above is differentiable and can be minimized

through many techniques, one of them being the gradient descent method,

that is discussed further in this section.

As an introduction to the gradient descent method, consider a simple mul-

tilayer perceptron that contains only two weights (two degrees of freedom), so

it can be visualized easy on a 3D plot. For any combination of weights the

network error for a given pattern can be defined, varying the weights through

all possible values, and plotting the errors in three-dimensional space, a error

surface plot is obtained, Figure 2.7. The objective of training is to find the

combination of weights which result in the smallest error (Bishop et al., 1995;

Gardner & Dorling, 1998).

15

Figure 2.7: Error surface of a two degrees of freedom perceptron (Gardner &
Dorling, 1998).

In general, NN can have hundreds or thousands of inputs/degrees of free-

dom, due to the high number of dimensions, it is not possible to plot a error

surface due to the multitude of weights. So, a method to find the minimum

point of the error surface (error function) is required.

One way to successfully find the minimum in the error function, as men-

tioned early, is the gradient descent method.

A gradient simply measures the change in all weights with regard to the

change in error, and can be think as the slope of a function, since a gradient

is a partial derivative with respect to it’s inputs. The higher the gradient,

more abrupt the slope will be, and the faster a model can be trained. But if

the slope is zero, a maximum or a minimum as been found on the error/loss

function, and the model stops learning.

In the gradient descent method, the path opposite to maximum variation

is followed, because the gradient operation takes a negative sign (−∇f(x)), so
a minimum of the error/loss function is seeked.

To apply the gradient descent method, error or loos function must be dif-

ferentiable and an a good practice is to group the weights and biases (both NN

parameters) together, forming a single weight vector w allowing to represent

16

the error/loss function as E = E(w). As mentioned early, at first the param-

eters (weights an biases) vector w is initialized randomly, an then the start to

update the parameter vector by moving a small distance in the w space in the

direction in which E decrease most rapidly, that is, in the −∇wE direction.

Making this process interactive by Equation 2.17, a sequence of weighted vec-

tors w(τ) is generated (Bishop et al., 1995; Russell & Norvig, 2021; Sutton &

Barto, 2018),

ω
(τ+1)
kj = ω

(τ)
kj + η

(
∂E

∂ωkj

)
w(τ)

, (2.17)

the parameter η is know as learning rate and can be interpreted as the steps

that gradient descent takes into the direction of the local minimum. η must be

chosen properly, in general start whit a small step, 10−4 order for example, but

a good practice is plot the learning rate an see hoe it evolves.Id the problem

is properly set, the parameters vector will converge to a point which E is

minimized (Donges, 2021).

There is no guarantee that the minimum found by gradient descent method

is a global minimum, it is possible that the minimum found is a local minimum,

so the results must be checked when possible.

2.2.2 Deep learning

As can be seen in the Figure 2.2, IBM, 2020, ranks Deep Learning (DL) as a

sub-field of Machine Learning (ML), and the last one as a sub-field of Artificial

Intelligence (AI) area.

ML enables the creation of algorithms to teach a specific machine to per-

form a task from a set of data, and from these data, explore the correlation

between them, discovering patterns, applying algorithms, and generating mod-

els that can be generalized for a specific task (Russell & Norvig, 2021).

When the model is trained, it is able to generalize to new data that were not

presented in the training stage, finding correlations and generating predictions

to accomplish the specified task. Generally speaking, ML is divided into three

main areas (Russell & Norvig, 2021; Sutton & Barto, 2018):

• Supervised Learning: consists of labeled data. The algorithm receives a

set of labeled data, that is, data with the corresponding correct outputs,

and the algorithm learns by comparing the model’s output with the ex-

17

pected output, readjusting its parameters until reaching an acceptable

and predetermined threshold a priori.

• Unsupervised Learning: Consists of unlabeled data. The algorithm re-

ceives a set of unlabeled data and seeks to find similarities between groups

of data, generating clusters, or groups of data.

• Reinforcement Learning:The agent learns to achieve a goal in an uncer-

tain and potentially complex environment. In reinforcement learning,

the artificial intelligence system faces a situation,the algorithm uses trial

and error to find a solution to the problem. In order for the machine to

do what the programmer wants, artificial intelligence receives rewards or

penalties for the actions it performs, were the objective is to maximize

the total reward.

Another categorization of ML gave by Brunton et al., 2020, can be seen in

the Figure 2.8, were applications are given for the categories. In this classifi-

cation Reinforcement Learning falls in the Semi-supervised Learning.

Figure 2.8: Machine learning algorithms categorization (Brunton et al., 2020).

So, DL, a subfield of ML, is focused in a depth analysis of data in larger

volume than usual. These algorithms aims to find patterns and correlations

in a large amount of information. That means that the datasets can be much

larger then the usual, many of then fitting in a classification called BIG Data,

the last one is beyond the scope of this work, but some information can be

found in Camargo Vega et al., 2015, and Davenport et al., 2012, work.

For this, the foundation of DL are its algorithms that help to identify

data, since they are designed to attempt to mime the functioning of the neural

networks in the human brain. Thus, such algorithms are able to repeatedly

perform analyzes of this data, which generates a greater and deeper learning

capacity when compared to traditional ML (Russell & Norvig, 2021).

18

The main difference between DL and ML, roughly speaking, is the structure

of the NN. While, in general, in ML we have a few layers in the NN or a very

simple structure, like linear regression or a decision tree, a DL NN can have

hundreds or thousands of layers.

Therefore, DL algorithms require much less human intervention. For ex-

ample shown in the Figure 2.9, the upper half show a ML structure, were a

software engineer would manually choose the features and a classifier to clas-

sify the images, verify that the output is accurate, and adjust the algorithm

if it was not. Wile a DL algorithm, features are automatically extracted and

the algorithm learns from its own mistakes (Wauke, 2020; Zhang et al., 2017).

Figure 2.9: Machine Learning vs Deep Learning (Wauke, 2020).

19

3 Methodology

As a first step toward the goal of infer parameters and flow fields of Partial

Differential Equation PDE’s in fluid mechanics, a dataset for training the DL

algorithm using the method proposed by Raissi et al., 2019, needs to be created.

For that task, as slightly different case will be adopted do obtain the dataset

when compared to the reference work of Raissi et al., 2019. In the mentioned

work , a two dimension Computational Fluid Dynamics (CFD) was used to

simulate a flow over a cylinder till a periodic von Kármán vortex street is

obtained. The option for this problem is based in the fact that it is a transient

problem that exhibits rich dynamics in steady state behavior, characterized

by a asymmetrical vortex shedding pattern, being a classical prototype case in

fluid mechanics.

The CFD simulation parameters can be seen in the Table 3.1 for the refer-

ence work (Raissi et al., 2019) and the present work. For the present work the

parameter are chosen to match Wissink, 1997, work as a manner to validate

simulation results.

Table 3.1: Simulation parameters as Reynolds Number (Re), free stream velocity
(U∞), characteristic length (D for cylinder diameter an L for the square edge),
kinematic viscosity (ν), discrete domain dimensions in the xy plane and boundary
condition (BC).

Case (Raissi et al., 2019) Present work
Re = U∞D/ν 100 100

U∞ 1 m/s 1 m/s
Characteristic length D = 1 m L = 1 m

ν 0.01 m2/s 0.01 m2/s
Discrete domain (x× y) [−15, 25]m× [−8, 8]m [−5.5, 15]m× [−5.7, 5.7]m

Inlet BC Uniform x vel. = U∞ Uniform x vel. = U∞
Outlet BC Zero pressure Zero pressure

Top/bottom wall BC Periodic Periodic
Around cylinder/square BC No slip No slip

F low type Incompressible Incompressible

20

In the Figure 3.1 a snapshot of the simulation used by Raissi et al., 2019,

can be seen. The figure shows the vorticity, that is a pseudovector field that

describes the local spinning motion, being the von Kármán vortex street easily

seen in the cylinder downstream.

Figure 3.1: Top:Incompressible flow and dynamic vortex shedding at Re =100.
The spatio-temporal training data correspond to the depicted rectangular region in
the cylinder wake. Bottom:Locations of training data-points for the stream-wise
and transverse velocity components, u(t, x, y) and v(t, x, t), respectively (Raissi et
al., 2019).

In order to obtain a dataset to answer the question made in the Introduction

section, a CFD simulation is conducted with the conditions shown in the right

column in the Table 3.1. The coordinate system is set in the geometric center

of the square, Figure 3.2, and the x axis runs positive horizontally to the right,

while the y axis runs vertically positive upwards.

To discretize the x[−5.5, 15]m×y[−5.7, 5.7]m domain a quadrilateral mesh

composed of 18815 discrete elements is used, where in each of them the Navier-

Stoques (NS) equations will be approximated. In the Figure 3.2 the mesh

can be seen, where in the outer rectangle the biggest elements nearby the

boundaries have a maximum edge size of 0, 3 m, while the elements inside

the green lines on the square wake have a maximum edge size of 0, 075 m or

75 mm.

21

The mesh in contact whit the square (first layer around the square) have a

first layer width of 2, 5 mm and a height of 2 mm, and is inflated by a growth

rate of 1, 1 over 40 layers. A sphere of influence with 1 m of diameter around

the cylinder is set to have maximum element edge size of 30 mm.

Figure 3.2: Discretized domain for CFD simulation. Vertically, on the left, the
square obstacle to the flow is showed. Around it, the mesh is finer, and the same
occurs in the region of the domain downstream of the square.

For the simulation ANSYS(R) Fluent(R) 2021 will be used. The flow will

be laminar, so no model will be used. Solution methods for Pressure-Velocity

coupling will use a SIMPLE scheme, wile spatial discretization will use a Least

Squares Cell Based method for gradient calculation, a second order method

for the Pressure and a second order upwind scheme for Momentum equation.

The transient formulation will be done through a second order implicit scheme.

The solution will be approximated till residual reach a order of 10−6.

To predict flow components, a DL algorithm will be used, where the NN

for that task will use a fully connected feed-forward perceptron layout.

A Physical-Informed Neural Network (PINN) algorithm will be used, were

the physics constraints to respect any symmetries, invariances, or conservation

laws will be added by the known NS differential equations directly into the loss

function when training the neural network, as can be seen in the Figure 3.3

(Raissi et al., 2019). The PINN will have a feedforward multilayer perceptron

layout, with 8 hidden layers, were automatic Differentiation will be used to

22

Figure 3.3: Schematic structure of the PINN.

differentiate NN outputs gradients with respect to their input coordinates and

model parameters. As a last step, the residual of the underlying differential

equation will be computed using these gradients, and add as an extra term in

the error/loss function.

Three inputs in the input layers will be used, one for the stream-wise flow

component u, another for the span-wise flow component v, and the last one

for the time step t. The output layer will consist in two outputs, one for the

predicted streamwise flow component upred., and one for the predicted spanwise

component of the flow vpred.. Between the input and output layer, eight hidden

layers are used, each one whit twenty neurons (Raissi et al., 2019).

For the activation function a Hyperbolic Tangent (tanh) function will be

used. Weights and biases parameters will be initialized by a Xavier method and

set to zero, respectively. To optimize the NN parameters, a Adam optimization

algorithm will be used in order to find a minimum in the error/lost function.

After the dataset is obtained by CFD simulation, with a velocity field

of N data points: {xi, yi, ti, ui, vi}Ni=1, and the DL framework is set, it will be

focused in the NS equations for a 2D incompressible flow with a set of unknown

parameters, λ1 and λ2, as can be seen in the Equation 3.1.

∂u

∂t
+ λ1

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ λ2

(
∂2u

∂x2
+
∂2u

∂y2

)
∂v

∂t
+ λ1

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ λ2

(
∂2v

∂x2
+
∂2v

∂y2

) (3.1)

The question to be answered is: What are the values of λ1 and λ2 the best

describe the data?

23

In order to automatically satisfy the continuity Equation 2.3, the latent

solution is defined as the stream function ψ(x, y, t), ans can be seen in the

Equation 3.3.

u =
∂ψ

∂y
, v = −∂ψ

∂x
(3.2)

Once the stream function is continuous, continuity equation is uncondi-

tionally satisfied, and then 2D incompressible NS and continuity equation can

be condense into one equation, resulting in the Equation 3.3.

∂

∂t
(∇2ψ) +

∂ψ

∂y

∂

∂x
(∇2ψ)− ∂ψ

∂x

∂

∂y
(∇2ψ) =

∂

∂t
(∇2ψ) +

∂(ψ,∇2ψ)

∂(y, x)
(3.3)

So, the residuals for each PDE can be defined as Equation 3.4.

f(x, y, t) =
∂u

∂t
+ λ1

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ λ2

(
∂2u

∂x2
+
∂2u

∂y2

)
g(x, y, t) =

∂v

∂t
+ λ1

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ λ2

(
∂2v

∂x2
+
∂2v

∂y2

) (3.4)

As a next step, the parameters λ1,2 of the Navier–Stokes operator

as well as the parameters of the neural network [ψ(t, x, y) p(t, x, y)] and

[f(t, x, y) g(t, x, y)] will be approximated by the mean square error method, as

can be seen in the Equation 3.5.

E =
1

N

N∑
i=1

(
|u(xi, yi, ti)−ui|2 + |v(xi, yi, ti)− vi|2

)
+

1

N

N∑
i=1

(
|f(xi, yi, ti)|2 + |g(xi, yi, ti)|2

) (3.5)

With the dataset and DL framework set, for scattered and scarce training

data (N), say a few percent of the total learning data available on the stream-

wise u(t, x, y), and transverse v(t, x, y) velocity components, the objective will

be find the unknown parameters λ1 and λ2 in the Equation 3.1, to test the

ability to predict the flow field in u and v directions, as well as the reconstruc-

tions of the pressure field in the square wake without providing any pressure

24

training data.

The network will be trained using the Adam stochastic gradient de-

scent algorithm (Kingma & Ba, 2014) whit a initial learning rate η =

1 × 10−3. And then the error will be minimized by a Limited-memory Broy-

den–Fletcher–Goldfarb–Shanno B (L-BFGS-B) method (Zhu et al., 1997),

where a random set of continuous points over the full input space are sam-

pled to compute the physics loss according to the Equation 3.5.

25

4 Results

In order to obtain a date set to train Physical-Informed Neural Network

(PINN), a Computational Fluid Dynamics (CFD) simulation was conducted

following the Methodology described in the previous section. For that 1000

iterations whit a time step 0.1 was conducted, resulting ins 100 s of simulation.

From the 1000 iterations, the last 200 was taken to create the dataset

after certificate that a steady-state and periodic von Kármán vortex street

was obtained, as can be seen in the Figure 4.1, were the vorticity field for the

last time step (1000 that corresponds to 100 s of simulation) can be seen.

Figure 4.1: Vorticity field demonstrating the von Kármán vortex street for the last
time step of simulation. The spatio-temporal dataset was obtained from data in the
depicted rectangular region in the square wake

From the black rectangle in the square wake in the Figure 4.1, the dataset

was obtained. So, the velocity field took a tensor form whit two columns,

fist for u velocity and second for v velocity, and 4799 lines representing the

scattered velocity data points for a time-step simulation. The third dimension

can be thought of as the tensor depth, representing the velocity field for the

26

4799 points in each of the 200 time steps.

For the first use of the Methodology described, following Raissi et al.,

2019, work, we have chosen N = 4799, corresponding to 1% of the total

available training data seen in the Figure 4.2. To train the PINN model,

200000 iterations on the dataset has been set.

x

ty

u(t, x, y)

x

ty

v(t, x, y)

Figure 4.2: Spatio-temporal training data obtained by CFD simulation corre-
sponding to the depicted rectangular region in the square wake. Contours: in the
left predicted x velocity field (u), in the right predicted y velocity field (v) by PINN.

The result was obtained after 12 hours of parallel processing on 1664

CUDA(R) cores. The error in the predicted velocity field was 2.018933× 10−3

and 5.382336× 10−3 for u and v velocity field respectively.

Also, the algorithm was able to predict the entire pressure field (p(x, y, t))

without any pressure training data due constraints imposed by continuity equa-

tion, as can be seen in the Figure 4.3.

Figure 4.3: TOP: at left predicted pressure field, as right exact pressure field.
BOTTOM: Table 1st row exact values for λ, 2nd row λ values for clean training
data and 3th row values of λ for 1% noise inserted in the data.

27

The pressure utilized in our simulation, from where the dataset was pro-

duced, is in terms of absolute pressure, so the difference in magnitude from

the predicted pressure field an the exact pressure fild obtained by CFD simu-

lation, top of the Figure 4.3, is 2.4+Patm ≈ 2.4+1.0132×105 Pa between the

exact and the predicted pressure. The pressure field can be retrieved only by

a constant from the velocity field data by definition, and it is so by the very

nature of the incompressible NS equations.

As highlighted by Raissi et al., 2019, this result of inferring a continuous

quantity of interest from auxiliary measurements, by leveraging the underlying

physics is a great example of the enhanced capabilities that PINN can offer,

and exposes their potential in solving high-dimensional inverse problems.

Still in the Figure 4.3, it is possible to see the values found for λ1 and λ2 in

the center line of the table, were the error found was 0.62262% and 5.75713%,

respectively. To be clear, in the way the Equations 3.1 was written, the exact

values for λ1 and λ2 must be 1 and 0.001 = ν, respectively. λ2 is equal to the

kinematic viscosity ν, as can be seen in the Equations 2.11, the difference is

that here ν = ρ/µ is used, so the exact values to be expected for the λs are

know. Has Raissi et al., 2019, did in their work, to test the performance of the

PINN algorithm, a 1% white noise was inserted into the data, and another run

of the algorithm was take. The result for λ1 was 0.994, practically no change

till the third decimal when compared with clean data λ1, while the λ2 for noisy

data was 7.34432%, about 27% higher.

Another analysis that can be done is subtract the predicted pressure field

from the simulated pressure field, in order to highlight the regions where the

error is greater, for example. For that we subtracted the predicted pressure,

Figure 4.4 (a), from simulate pressure Figure 4.4 (b), Psimulated−Ppredicted as can

be seen in the Figure 4.4 (c). The error ranges between 0.038 an 0.048, values

two orders of magnitude less than predicted value. Being a very small error

given the circumstances, where the regions that presented the greatest error

are coincident with the vortex formation regions downstream of the square.

To analyze the evolution values of the parameters λ for the clean training

data of the PINN, the Figure 4.5 was made, as Figure 4.5a shows the evolution

of λ1, whereas Figure 4.5b shows λ2. It can be seen that that λ1 converged to

0.992 and λ2 to 0.01118. It is important to clarify that up to this point the

restrictions imposed by the NS equations have not yet been used to minimize

the error, and the values obtained are purely optimizing the input data with

28

2 3 4 5 6 7

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.1

2.2

2.3

2.4

2.5

2.6

(a) Predicted Pressure field.
2 3 4 5 6 7

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

4.5

4.6

4.7

4.8

4.9

5.0

+1.0132×105

(b) Simulated Pressure field.

2 3 4 5 6 7

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.038

0.040

0.042

0.044

0.046

0.048

+1.013224×105

(c) Predicted Pressure subtracted from Simu-
lated Pressure.

Figure 4.4: Red regions represent the places where the error between Predicted and
Simulated Pressure is greater (c). Figure (b) corresponds of the Simulated pressure
subtracted from the Atmospheric Pressure.

the output data, since the model will be submitted to a new error minimization

process, but this time taking into account the restrictions imposed by physical

laws (last term in the right of the NS Equations 3.1). Another detail is that

to generate this figure the first 20 iterations were discarded, as in some of

them the approximate values for λ were too high or too low (3 to 6 orders of

magnitude greater or smaller than the converged values) in order to produce

a graph where it was possible to see the learning evolution.

In the Figure 4.6 it can be seen the loss/error evolution thought the 200000

iterations, reaching 0.6685 for the clean data, and 1.023 for the noisy data,

both in the last iteration. For the same motive as in the Figure 4.5, the

first 20 iterations were discarded because of high loss values, an so enable the

visualization of the loss evolution over iteration.

Now, the result of the final values of λ, Figure 4.7, and loss, Figure 4.8,

that was obtained by the mean square error taking into account the underlying

29

(a) λ1 evolution. (b) λ2 evolution.

Figure 4.5: λ1,2 convergence after 200000 iteration for clean dataset.

physics laws (final optimization process), shown in the Equation 3.5, can be

seen. The stop criterion is 50000 iterations or when the machine epsilon (a

float precision) is achieved. Where the clean data and noisy data took around

37000 iterations to achieve machine epsilon. It can be seen that λ1, Figure

4.7a, was already optimized, that explains the weird behavior in the graph.

The λ2 got a bit more optimized, as can be seen in the Figure 4.7b.

For evaluation of the final training process, a plot of the loss function

against the iteration is shown in the Figure 4.8. It can be seen a much more

smooth convergence, that is explained because the early training process that

the PINN got through.

Even whit noisy data, the PINN was able to identify λ1 and λ2 with good

precision, taking in the account the scarce and sparse data provided for the

training process, a fact that shows great potential in real world applications.

Figure 4.6: Training error (loss) by iteration first loss minimization, blues curve
for clean training data, red for 1% noisy training data.

30

(a) λ1 evolution for final minimization. (b) λ2 evolution for final minimization.

Figure 4.7: λ1,2 convergence after around 37000 iteration in the final loss mini-
mization for clean data.

Figure 4.8: Mean square error (loss) by iteration, blues curve for clean training
data, red for 1% noisy training data.

31

5 Conclusions

As closing remarks of this work a few conclusions can be made. First of all,

the general objective was reached, where a dataset was created from a CFD

simulation, and the PINN was successfully applied from these data, obtaining

the coefficients λ fitted to the simulation dataset with great precision, even

whit scarce, sparse and noisy data.

The specific objectives of obtain the entire pressure field, without any train-

ing pressure data provided, was achieved in its entirety, as well as the predic-

tion of velocity fields in the directions of u and v. This result of inferring

a continuous quantity of interest from auxiliary measurements, by leveraging

the underlying physics, demonstrates the enhanced capabilities that PINN can

offer.

It was proven, that with scarce and sparse data, or even noisy data, ex-

cellent results can be obtained, with errors around 5%, in high-dimensionality

non linear problems like fluid dynamics presented here.

Another application of data-driven discovery problems is to help to derive

more accurate closure turbulence models or develop more efficient surrogate

models for specialized applications or optimization studies. PINN can con-

tribute by increasing the quality and speed of obtaining results from problems

involving non-linear PDE, and can replace traditional methods like Finite El-

ements Method (FEM) and CFD in some situations, but not in all.

Despite the good results obtained, there is much room for improvement, like

the loss function used in this work and used by Raissi et al., 2019. Starting

by how the loss is calculated, it would give a more accurate result just by

introducing a L1 or L2 norm regularization, for example. This is an easy and

direct improvement, requiring only a few lines of code.

As future work, it is intended to continue deepening the knowledge in

data-driven problems, seeking implementation in real and theoretical problems,

applying the methodology described here in more challenging situations, such

32

as turbulent flows in three dimensions, or heat and mass transfer.

33

Bibliography

Almajid, M. M., & Abu-Al-Saud, M. O. (2022). Prediction of porous media

fluid flow using physics informed neural networks. Journal of Petroleum

Science and Engineering, 208, 109205.

Balaji, C., Srinivasan, B., & Gedupudi, S. (2021). Chapter 6 - natural convec-

tion. In C. Balaji, B. Srinivasan, and S. Gedupudi (Eds.), Heat transfer

engineering (pp. 173–198). Academic Press. https : / / doi . org / https :

//doi.org/10.1016/B978-0-12-818503-2.00006-X

Bhardwaj, A. (2020). What is perceptron: A beginners guide for perceptron

[Accessed: 13 dec. 2021]. https://towardsdatascience.com/what- is- a-

perceptron-basics-of-neural-networks-c4cfea20c590

Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford

university press.

Brownlee, J. (2020). Crash course on multi-layer perceptron neural networks

[Accessed: 13 dec. 2021]. https://machinelearningmastery.com/neural-

networks-crash-course/

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning

for fluid mechanics. Annual Review of Fluid Mechanics, 52, 477–508.

Camargo Vega, J. J., Camargo Ortega, J. F., & Joyanes Aguilar, L. (2015).

Conociendo big data. Facultad de Ingenieŕıa, 24 (38), 63–77.

Chicone, C. (2017). Chapter 12 - flow in a pipe. In C. Chicone (Ed.), An

invitation to applied mathematics (pp. 321–326). Academic Press. https:

//doi.org/https://doi.org/10.1016/B978-0-12-804153-6.50012-9

Crevier, D. (1993). Ai: The tumultuous history of the search for artificial in-

telligence. Basic Books, Inc.

Davenport, T. H., Barth, P., & Bean, R. (2012). How “big data” is different.

Dissanayake, M., & Phan-Thien, N. (1994). Neural-network-based approxi-

mations for solving partial differential equations. communications in

Numerical Methods in Engineering, 10 (3), 195–201.

34

https://doi.org/https://doi.org/10.1016/B978-0-12-818503-2.00006-X
https://doi.org/https://doi.org/10.1016/B978-0-12-818503-2.00006-X
https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590
https://towardsdatascience.com/what-is-a-perceptron-basics-of-neural-networks-c4cfea20c590
https://machinelearningmastery.com/neural-networks-crash-course/
https://machinelearningmastery.com/neural-networks-crash-course/
https://doi.org/https://doi.org/10.1016/B978-0-12-804153-6.50012-9
https://doi.org/https://doi.org/10.1016/B978-0-12-804153-6.50012-9

Donges, N. (2021). Neural networks bias and weights [Accessed: 14 dec. 2021].

https://builtin.com/data-science/gradient-descent

Gardner, M. W., & Dorling, S. (1998). Artificial neural networks (the multi-

layer perceptron)—a review of applications in the atmospheric sciences.

Atmospheric environment, 32 (14-15), 2627–2636.

Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic

subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynam-

ics, 3 (7), 1760–1765.

IBM, C.-E. (2020). Artificial intelligence (ai) [Accessed: 12 dec. 2021]. https:

//www.ibm.com/cloud/learn/what-is-artificial-intelligence

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

Kundu, P., Cohen, I., & Dowling, D. (2015). Fluid mechanics. Elsevier Science.

https://books.google.com.br/books?id=EehDBAAAQBAJ

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for

solving ordinary and partial differential equations. IEEE transactions

on neural networks, 9 (5), 987–1000.

Lim, M. (2019). History of ai winters [Accessed: 10 dec. 2021]. https://www.

actuaries.digital/2018/09/05/history-of-ai-winters/

Malik, F. (2019). Neural networks bias and weights [Accessed: 13 dec. 2021].

https://medium.com/fintechexplained/neural-networks-bias-and-weights-

10b53e6285da

Mao, Z., Jagtap, A. D., & Karniadakis, G. E. (2020). Physics-informed neural

networks for high-speed flows. Computer Methods in Applied Mechanics

and Engineering, 360, 112789.

McCarthy, J. (2007). What is artificial intelligence?

McCorduck, P., & Cfe, C. (2004). Machines who think: A personal inquiry into

the history and prospects of artificial intelligence. CRC Press.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5 (4), 115–

133.

Meneveau, C., & Katz, J. (2000). Scale-invariance and turbulence models for

large-eddy simulation. Annual Review of Fluid Mechanics, 32 (1), 1–32.

Mohd Yusof, N. (2005). Time series modeling and designing of artificial neural

network (ann) for revenue forecasting (Ms.C. dissertation). Universiti

Teknologi Malaysia. Malaca, Malaysia.

35

https://builtin.com/data-science/gradient-descent
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://books.google.com.br/books?id=EehDBAAAQBAJ
https://www.actuaries.digital/2018/09/05/history-of-ai-winters/
https://www.actuaries.digital/2018/09/05/history-of-ai-winters/
https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da
https://medium.com/fintechexplained/neural-networks-bias-and-weights-10b53e6285da

Nilsson, N. J. (1982). Principles of artificial intelligence. Springer Science &

Business Media.

Phillips, L. (2018). Turbulence, the oldest unsolved problem in physics [Ac-

cessed: 08 dec. 2021]. https : / / arstechnica . com / science / 2018 / 10 /

turbulence-the-oldest-unsolved-problem-in-physics/?comments=1

Pope, S. B. (2000). Turbulent flows. Cambridge University Press.

Raissi, M., & Karniadakis, G. E. (2018). Hidden physics models: Machine

learning of nonlinear partial differential equations. Journal of Compu-

tational Physics, 357, 125–141.

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural

networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. Journal of

Computational Physics, 378, 686–707.

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Numerical gaussian

processes for time-dependent and nonlinear partial differential equa-

tions. SIAM Journal on Scientific Computing, 40 (1), A172–A198.

Raissi, M., Yazdani, A., & Karniadakis, G. E. (2020). Hidden fluid mechanics:

Learning velocity and pressure fields from flow visualizations. Science,

367 (6481), 1026–1030.

Ramabathiran, A. A., & Ramachandran, P. (2021). Spinn: Sparse, physics-

based, and partially interpretable neural networks for pdes. Journal of

Computational Physics, 445, 110600.

Ray, A. (2021). Ai winter: The highs and lows of artificial intelligence [Ac-

cessed: 10 dec. 2021]. https://www.historyofdatascience.com/ai-winter-

the-highs-and-lows-of-artificial-intelligence/

Rechenberg, I. (1964). Kybernetische lösungsansteuerung einer experi-

mentellen forschungsaufgabe. Ann. Conf. WGLR Berlin, vol. 35.

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton

project para. Cornell Aeronautical Laboratory.

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach,

global edition 4th. Pearson Series.

Schlichting, H., & Gersten, K. (2003). Boundary-layer theory. Springer Science

& Business Media.

Schuchmann, S. (2019). History of the first ai winter [Accessed: 10 dec.

2021]. https://towardsdatascience.com/history- of- the- first- ai -winter-

6f8c2186f80b

36

https://arstechnica.com/science/2018/10/turbulence-the-oldest-unsolved-problem-in-physics/?comments=1
https://arstechnica.com/science/2018/10/turbulence-the-oldest-unsolved-problem-in-physics/?comments=1
https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-of-artificial-intelligence/
https://www.historyofdatascience.com/ai-winter-the-highs-and-lows-of-artificial-intelligence/
https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b

Sharma, S. (2017). Activation functions in neural networks [Accessed: 13 dec.

2021]. https : / / towardsdatascience . com / activation - functions - neural -

networks-1cbd9f8d91d6

Simplilearn. (2021). What is perceptron: A beginners guide for perceptron

[Accessed: 12 dec. 2021]. https://www.simplilearn.com/tutorials/deep-

learning-tutorial/perceptron

Smagorinsky, J. (1963). General circulation experiments with the primitive

equations: I. the basic experiment. Monthly weather review, 91 (3), 99–

164.

Sun, L., Gao, H., Pan, S., & Wang, J.-X. (2020). Surrogate modeling for fluid

flows based on physics-constrained deep learning without simulation

data. Computer Methods in Applied Mechanics and Engineering, 361,

112732.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

MIT press.

Wauke, J. (2020). Aprendizado profundo (deep learning) vs aprendizado de

máquina (machine learning) - qual é a diferença? [Accessed: 15 dec.

2021]. https://jobu.com.br/2020/10/24/aprendizado-profundo-deep-

learning-vs-aprendizado-de-maquina-machine-learning-qual-e-a-diferenca/

White, F. M. (2021). Fluid mechanics (9th ed.). McGaw-Hill.

Wiener, N. (2019). Cybernetics or control and communication in the animal

and the machine. MIT press.

Wissink, J. G. (1997). Dns of 2d turbulent flow around a square cylinder.

International journal for numerical methods in fluids, 25 (1), 51–62.

Young, D. F., Munson, B. R., Okiishi, T. H., & Huebsch, W. W. (2010). A

brief introduction to fluid mechanics. John Wiley & Sons.

Yu, B. et al. (2017). The deep ritz method: A deep learning-based nu-

merical algorithm for solving variational problems. arXiv preprint

arXiv:1710.00211.

Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep

learning: Progress in machine intelligence for rational drug discovery.

Drug discovery today, 22 (11), 1680–1685.

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algorithm 778: L-bfgs-

b: Fortran subroutines for large-scale bound-constrained optimization.

ACM Transactions on mathematical software (TOMS), 23 (4), 550–560.

37

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://jobu.com.br/2020/10/24/aprendizado-profundo-deep-learning-vs-aprendizado-de-maquina-machine-learning-qual-e-a-diferenca/
https://jobu.com.br/2020/10/24/aprendizado-profundo-deep-learning-vs-aprendizado-de-maquina-machine-learning-qual-e-a-diferenca/

	List of Figures
	List of Tables
	List of symbols
	List of acronyms
	Introduction
	Objectives
	Specific objectives

	Theoretical foundations
	Field equations for Newtonian fluid flow
	Continuity equation
	Momentum equations
	Navier-Stokes equations

	Artificial intelligence
	Perceptron neural network
	Deep learning

	Methodology
	Results
	Conclusions
	Bibliography
	Glossary

